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Abstract

In this project, we introduce an innovative
AI-based approach to improve education
in underserved regions, focusing on a cus-
tomized academic dataset and LLM tun-
ing methods. Centered on the General
Scholastic Ability Test (GSAT) dataset,
our approach aims to provide fair educa-
tional support in areas with limited re-
sources. We curated a GSAT dataset and
expanded it with a comprehensive social
studies question bank. The research ex-
tensively explores both BERT-based and
LLM-based architectures, with particular
emphasis on the Taiwan LLM. It also in-
corporates advanced training techniques
such as LoftQ and the Lion optimizer.
Our results demonstrate significant perfor-
mance improvements over existing mod-
els on GSAT benchmarks, with notable
advancements in the integration of visual
data through Vision BERT. This paper
lays the groundwork for more interactive
AI-driven educational tools and outlines fu-
ture research directions to further enhance
AI’s capabilities in education. Our source
code is available at https://github.com/
jwliao1209/TWLLM-Tutor.git.

1 Introduction

In disadvantaged areas, educational resources
are severely limited, posing significant chal-
lenges for many children who lack access to
personalized academic support. The COVID-
19 pandemic has led to a shift to online
education, resulting in a higher prevalence
of computing devices in households that can
be used for educational purposes. Notably,
marginalized communities experience a height-
ened lack of educational resources, emphasiz-
ing the need for improved one-on-one instruc-
tional approaches. This context forms the
foundation of our research initiative. Our

project is dedicated to developing an Artifi-
cial Intelligence model specifically designed to
enhance the educational experience of these
groups. This AI-based intervention is designed
to address disparities in educational access by
providing customized pedagogical support and
creating equitable learning opportunities for
students in resource-limited settings.

In the course of our research, we systemati-
cally collected a comprehensive dataset from
the General Scholastic Ability Test (GSAT)
administered by the College Entrance Exam-
ination Center (CEEC). This dataset has un-
dergone a rigorous process of organization and
cleansing to ensure its relevance and accu-
racy. After careful evaluation and refinement,
around 1,500 questions were chosen to form
the core dataset for our study. This carefully
selected set of questions serves as the empiri-
cal foundation for our analysis and the devel-
opment of our AI model. It ensures a strong
and representative sample for our educational
research efforts.
To enhance the robustness of our AI model, we
augmented our original dataset by integrating
a comprehensive Social Studies question bank,
accompanied by detailed answer explanations.
This question bank is categorized into three
primary disciplines: Geography, with 322 ques-
tions; History, comprising a substantial 9,205
questions; and Civics, consisting of 2,035 ques-
tions.

The significantly smaller number of Geogra-
phy questions in our dataset can be attributed
to the specific nature of our AI model, which
is based on Large Language Models (LLM).
LLMs are inherently text-based and, as a re-
sult, have limitations in processing non-textual
data inputs, such as images or tables. Conse-
quently, during the process of compiling the
dataset for Geography, a significant number
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of questions that heavily rely on visual aids
such as maps, diagrams, or tabular data were
excluded. This exclusion was necessary be-
cause these types of questions are incompatible
with the current capabilities of our LLM-based
model. Therefore, the dataset for History and
Civics could be more comprehensively com-
piled due to their predominantly text-based
question formats. In contrast, the Geography
section was limited to questions that could be
presented and interpreted solely in a textual
format. This methodology ensures that our
AI model operates within its functional capac-
ity, focusing on text-based analysis and inter-
pretation, which is crucial for maintaining the
integrity and effectiveness of the model in ed-
ucational applications.

This addition significantly broadens the
scope and depth of our dataset, offering a more
nuanced and extensive range of educational
content. Such a diverse dataset is crucial
for training our AI model to comprehend
and tackle a wide range of questions, thereby
enhancing its accuracy and effectiveness
in educational applications. This strategic
expansion of our dataset is crucial to ensuring
that our AI model is not only well-rounded
but also capable of providing comprehensive
and contextually rich educational support.
Our initial approach involved using
BERT (Devlin et al., 2018) to train a
multiple-choice task as our baseline model.
Recognizing that some questions included
images, which cannot be processed as input by
the standard language model, we introduced
’Vision BERT’, which incorporates vision
technology from CLIP (Radford et al., 2021).
This enhancement enables our model to
process visual input, thereby broadening its
applicability to a wider variety of question
types.

Focusing on the Taiwan LLM (Lin and
Chen, 2023), we conducted a comprehensive
investigation into Prompt Engineering, exam-
ining the impact of different prompts on model
performance. Additionally, we explored ad-
vanced training methodologies. Notably, we
implemented a novel fine-tuning architecture
called LoftQ. (Li et al., 2023), specifically de-
signed to optimize the performance of our
model.

Due to budget constraints, we used the web-
based version of GPT for manual question in-
put, bypassing the need for OpenAI’s API.
This method facilitated ongoing research by al-
lowing queries to generate accurate responses
from the model. Our innovative approach
highlights our dedication to resourcefulness in
advancing AI capabilities. We conducted a
performance benchmark of our ’Vision BERT’,
a model that integrates a visual encoder from
CLIP, against GPT-3.5. The results showed
that ’Vision BERT’ outperformed BERT by
6.9%. Additionally, utilizing the Lion opti-
mizer (Chen et al., 2023) and our proprietary
Question Bank Dataset, our model outper-
formed Taiwan LLM by 45.7% on the self-
collected GSAT dataset. Our contribution can
be summarized as follows:

1. Create an academic dataset for AI appli-
cations in education.

2. We surveyed several LLM tuning meth-
ods in order to achieve competitive per-
formance compared to GPT-3.5.

3. We have taken the initial step to inte-
grate visual data with our model’s input,
enabling it to answer questions not only
based on language data but also on visual
information.

4. Our proposed method outperforms state-
of-the-art methods on the self-collected
GSAT benchmarks.

2 Method
In this project, we explore two main ap-
proaches to addressing the multiple choice
problem: a BERT-based architecture and an
LLM-based architecture. For each method, we
thoroughly investigate various alternatives to
improve performance, conducting extensive re-
search by reviewing academic papers and en-
gaging in technical surveys. Additionally, we
leverage our expertise to apply deep learning
techniques from the field of computer vision to
the realm of text.

For BERT-based methods, we utilize the
BERT model as a baseline and propose a Vi-
sion BERT approach to address questions that
involve visual data. On the other hand, we
conduct a comprehensive exploration of LLM
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methods. By leveraging multiple techniques,
including LoRA (Hu et al., 2021), LoftQ (Li
et al., 2023), and employing the novel opti-
mizer Lion (Chen et al., 2023), we achieved a
significant improvement in solving Social Stud-
ies questions in GSAT, resulting in a substan-
tial performance gain.

2.1 Architecture (I): BERT for
Multiple Choice

We utilize the hfl/chinese-bert-wwm-ext
model. The detailed model architecture is il-
lustrated in Figure 1.

Figure 1: Architecture of Chinese BERT for multi-
ple choice.

2.2 Architecture (II): Vision BERT
for Multiple Choice

In the GSAT, some questions may include im-
age data, requiring students to consider both
textual and visual information to answer cor-
rectly. However, the standard BERT model
only supports textual input. To overcome this
limitation and make use of visual input, we
introduce the Vision BERT architecture. This
architecture includes an additional pre-trained
CLIP model and a learnable MLP in addition
to the original BERT model. As depicted in
Figure 2, the visual input is processed by pass-
ing the image through CLIP’s visual encoder
to obtain the visual embedding. Subsequently,
we utilize the MLP to convert this visual em-
bedding into a feature vector, which can then
be considered as a word embedding and fed
into the original BERT model. In each exper-
iment, we freeze the weights of the pretrained
CLIP model and maintain consistent hyperpa-
rameter settings. 2.1 remains the same.

Figure 2: Architecture of Vision BERT for multi-
modal multiple choice.

2.3 Architecture (III): Taiwan LLM
for Multiple Choice

As illustrated in Figure 3, we utilize the Tai-
wan LLM to construct our Taiwan LLM-based
Multiple Choice Model. This architecture is
built on top of the Taiwan LLM by adding an
extra linear layer to its final layer. This ex-
tension adjusts the output dimension to four,
with labels 0, 1, 2, and 3 corresponding to
the correct answers (A), (B), (C), and (D),
respectively. To fully leverage the valuable
and powerful information acquired during Tai-
wan LLM’s pretraining, we keep the pretrained
weights of the Taiwan LLM fixed and exclu-
sively fine-tune the additional final layer.

Figure 3: Architecture of Taiwan LLM for multiple
Choice.

2.4 Architecture (IV): Taiwan LLM
for Instruction Tuning

For instruction tuning, we combine prompts
and answers as the model’s input and config-
ure standardized outputs to facilitate accurate
calculation. The model’s architecture is illus-
trated in Figure 4.
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Figure 4: Architecture of Taiwan LLM for instruc-
tion tuning.

2.5 Low-Rank Adaptation
In the field of machine learning, low-rank ap-
proximation is a well-known technique. (Udell
and Townsend, 2019) demonstrated that high-
dimensional data can be approximated using
low-rank matrices. In 2021, a team from Mi-
crosoft introduced LoRA (Low-rank Adapta-
tion) (Hu et al., 2021; Aghajanyan et al., 2021)
architecture, marking the first application of
low-rank techniques to fine-tuning neural net-
works. Subsequently, researchers combined
quantization techniques with LoRA to pro-
pose QLoRA (Dettmers et al., 2023), signifi-
cantly reduces the computational resources re-
quired for fine-tuning large language models
(LLMs). In this project, we introduce an im-
proved version based on QLoRA, named LoftQ
(LoRA Fine-Tuning Aware Quantization) (Li
et al., 2023). Compared to QLoRA, LoftQ
provides a more precise approximation of the
original parameter matrix, leading to a signifi-
cant improvement in benchmark performance.
We present the LoftQ algorithm and offer our
mathematical insights.

LoftQ employs an N -bit quantized weight Q
and a low-rank matrix L ∈ Rm×n to approxi-
mate the pre-trained weight W . The optimiza-
tion problem is formulated as follows:

min
Q,L
∥W −Q− L∥F s.t. rank(L) ≤ r (1)

To reduce the hardware usage, the matrix
L is decomposed into AB⊤, where A ∈ Rm×r

and B ∈ Rr×n. This reformulates the problem
as follows:

min
Q,A,B

∥W −Q−AB⊤∥F (2)

Since Problem 2 is NP-hard, we employ al-
ternating optimization to approximate the so-
lution of the reformulated problem:

Qt = argmin
Q

∥W −Q−At−1B
⊤
t−1∥F (3)

(At, Bt) ∈ argmin
(A,B)

∥W −Qt −AB⊤∥F (4)

Finally, Equation 3 can be represented as
Qt = qN (W − At−1B

⊤
t−1) with N -bits quanti-

zation function qN . Additionally, the Eckart–
Young theorem provides a closed-form solution
for Equation 4, which can be obtained directly
by solving the singular value decomposition
(SVD). The detailed process is presented in
Algorithm ??.

2.6 Optimization
We primarily utilize AdamW and Lion as our
optimizers. AdamW is a stochastic optimiza-
tion technique that modifies the traditional
approach to weight decay in Adam’s method
(Kingma and Ba, 2014) by decoupling the
weight decay process from the gradient update.
The algorithm 1 is described as follows:

Algorithm 1 AdamW Optimizer
1: Input: Objective function f(θ), learning

rate γt, weight decay rate λ, β1, β2, and ϵ
2: Initialization: Parameters θ0, first mo-

ment m0 ← 0, and second moment v0 ← 0

3: while θt not converged do
4: gt ← ∇θf(θt−1)
5: mt = β1mt−1 + (1− β1)gt
6: vt ← β2vt−1 + (1− β2)gt ⊙ gt
7: m̂t ←

mt

1− βt
1

8: v̂t ←
vt

1− βt
2

9: θt ← θt−1 − γt

(
m̂t√
v̂t + ϵ

+ λθt−1

)
10: end while
11: return θt

To accelerate model convergence, we inves-
tigated the new optimizer Lion (EvoLved Sign
Momentum), which introduced by the Google
Brain team in 2023. The Lion algorithm was
discovered through program search, as demon-
strated in Algorithm 2. Distinctively, Lion
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uses the sign operator, which provides compu-
tational efficiency compared to AdamW’s divi-
sion and exponentiation operations. This effi-
ciency reduces the computational time by 2%
to 15%. Moreover, Lion demonstrates signifi-
cantly improved convergence speed and over-
all performance compared to AdamW, espe-
cially when used with large batch sizes. In this
project, we utilized Lion’s rapid convergence
property to significantly accelerate the comple-
tion of an extensive series of experiments.

Algorithm 2 Lion Optimizer
1: Input: Objective function f(θ), learning

rate γt, weight decay rate λ, β1, and β2
2: Initialization: Parameters θ0 and first

moment m0 ← 0
3: while θt not converged do
4: gt ← ∇θf(θt−1)
5: ut = β1mt−1 + (1− β1)gt
6: θt ← θt−1 − γt · (sign(ut) + λθt−1)
7: mt ← β2mt−1 + (1− β2)gt
8: end while
9: return θt

3 Experiments

The experiments were performed on a personal
computer equipped with a single NVIDIA
GeForce RTX 4090 GPU with 24 GB of
VRAM, and a server configuration featuring a
single RTX A6000 GPU with 49 GB of VRAM.

3.1 Datasets and Experimental
Settings

For training and evaluating our model, we
used the GSAT questions from the years 83
to 112, totaling approximately 2,300 questions,
with at least 500 queries containing images.
Furthermore, our self-compiled question bank
(referred to as QB) contributed approximately
11,000 questions, distributed across History
(9,000), Geography (300), and Civics (2,000).
This diverse dataset provides a comprehensive
foundation for robust model training and eval-
uation.

In the instruction tuning of Taiwan LLM,
we utilized a specific template as depicted in
Figure. 5, which is structured into two distinct
segments. The first segment, labeled as Ques-
tion, incorporates a <Prompt Prefix> and fol-

lows with directives combined with the <Ques-
tion and Options> provided by the USER, con-
cluding with the word ASSISTANT. The sec-
ond segment, termed Answer, comprises the
<Correct Option> along with the <Answer
Explanation>. This structured approach en-
ables Taiwan LLM to accurately respond to
queries and generate comprehensive explana-
tions, thereby enhancing its learning and ex-
planatory capabilities.

Figure 5: Prompt template.

3.2 Quantitative Results for Different
Models

In our experiment, the model training em-
ployed the entire QB along with GSAT ques-
tions from 83 to 107, specifically excluding
those with images. For the evaluation, we uti-
lized GSAT questions 108 to 112, excluding
image-based questions, to assess the model’s
performance.

In our comparative analysis, we evaluated
various models and methodologies, as detailed
in Table 1. This includes Zero-shot ChatGPT,
Chinese-BERT utilizing a Multiple Choice
framework, Taiwan-LLM-7B in both Multiple
Choice and Instruction Tuning configurations.
The results are presented in Table 2, reveal
a significant finding: the model Taiwan-LLM-
7B, which was trained using instruction tuning
with LoftQ exclusively on the GSAT dataset
from the years 83 to 107, achieved the high-
est performance with a score of 0.4789. How-
ever, it is important to note that despite this
achievement, the performance of Taiwan LLM
still falls short when compared to the more
advanced ChatGPT-3.5 model. This result of-
fers valuable insights into the capabilities and
limitations of current language models, espe-
cially in the context of specific training strate-
gies and datasets.

In examining the experimental results pre-
sented in Table 3, a notable observation arises
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Model BERT Vision BERT Taiwan LLM Taiwan LLM Taiwan LLM
Method MC MC MC + QLoRA IT + QLoRA IT + LoftQ
Epochs 10 10 10 10 10
Batch size 8 × 16 8 × 16 16 × 1 16 × 1 4 × 4
Optimizer AdamW AdamW AdamW or Lion AdamW or Lion AdamW
Learning rate 2e-5 2e-5 2e-4 2e-4 2e-4
Weight decay 1e-5 1e-5 1e-5 1e-5 1e-5
Scheduler Linear Linear Constant Constant Constant
Warm up step 300 300 0 0 0

Table 1: Hyper-parameters for models training.

regarding the effectiveness of various train-
ing methodologies. The model trained us-
ing the LoftQ framework demonstrates sig-
nificantly better performance when evaluated
against the GSAT dataset. The improved per-
formance can be attributed to the specialized
features and optimization strategies inherent
in the LoftQ training approach, which appear
to align well with the complexities and nu-
ances of the GSAT questions. Such a find-
ing not only emphasizes the potential of LoftQ
as a robust training mechanism but also high-
lights the importance of selecting an appropri-
ate training framework that resonates with the
specific characteristics of the dataset in ques-
tion.

Table 4 presents the outcomes of leverag-
ing QB provides a compelling illustration of
the impact of training data. The data clearly
shows that using the QB as the primary source
for model training significantly improves its
overall performance. This improvement can be
attributed to the diverse and comprehensive
nature of the QB, which covers a wide range
of topics and question types, providing a rich
and varied training environment for the model.
Such an approach ensures that the model is
not only exposed to a wide range of informa-
tion but also learns to handle various query for-
mats and complexities. This finding is signifi-
cant because it underscores the importance of
a well-curated and extensive training dataset
in developing robust and high-performing AI
models, especially in applications requiring a
deep understanding of diverse subject matter.

For case studies, we randomly selected three
examples by comparing the answers and ex-
planations from the instruction-tuned Taiwan

LLM. In Figure 6, it is evident that Taiwan
LLM, following instruction tuning, provides
accurate and clearer explanations, while high-
lighting GPT-3.5’s tendency for factual inaccu-
racies, as demonstrated in a particular histor-
ical example. Besides, Figure 7 demonstrates
that GPT 3.5’s inaccuracies, stemming from
its hallucinations, result in unreliable expla-
nations, whereas our trained model provides
more accurate and trustworthy answers. Last
but not least, Figure 9 indicates that GPT
3.5 often produces explanations with logical
inconsistencies, while our trained model gener-
ates more coherent and logically sound expla-
nations, highlighting the effectiveness of our
training approach.

Model Method Accuracy
Chinese-BERT MC 0.3568
Taiwan LLM MC 0.3286
Taiwan LLM IT+QLoRA 0.3380
Taiwan LLM IT+LoftQ 0.4789
ChatGPT-3.5 Zero-shot 0.5000

Table 2: Result of test performance on 108-112
social GSAT.

3.3 Ablation Study
Taking one step further, the data presented
in Table 5 offers a comprehensive overview
of our model’s performance metrics on vari-
ous datasets, with a specific focus on QB and
GSAT. The striking similarity in the model’s
performance on both of these datasets is note-
worthy. This comparable level of effective-
ness indicates a strong correlation between the
model’s training on QB and its capacity to effi-
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Training Dataset Testing Dataset Model Method Explanation Accuracy
History QB (9000) 108-112 History GSAT Chinese BERT MC 0.4742
History QB (9000) 108-112 History GSAT Taiwan LLM MC 0.5773
History QB (9000) 108-112 History GSAT Taiwan LLM IT + QLoRA 0.5051
History QB (9000) 108-112 History GSAT Taiwan LLM IT + QLoRA ✓ 0.5360
History QB (9000) 108-112 History GSAT Taiwan LLM IT + LoftQ ✓ 0.6082
Civics QB (2035) 108-112 Civics GSAT Chinese BERT MC 0.4177
Civics QB (2035) 108-112 Civics GSAT Taiwan LLM MC 0.3418
Civics QB (2035) 108-112 Civics GSAT Taiwan LLM IT + QLoRA 0.4051
Civics QB (2035) 108-112 Civics GSAT Taiwan LLM IT + QLoRA ✓ 0.4936
Civics QB (2035) 108-112 Civics GSAT Taiwan LLM IT + LoftQ ✓ 0.5443

Table 3: Results of test performance on the 108-112 history GSAT and civics GSAT, respectively. The
table illustrating experimental results demonstrates that the model trained using LoftQ exhibits superior
performance on the GSAT dataset.

ciently process the GSAT queries. This obser-
vation has profound implications for the prepa-
ration strategies for GSAT, as it suggests that
QB serves as a highly relevant and beneficial
tool for such preparations. It demonstrates
that the diversity and complexity of the ques-
tions in QB effectively mirror the structure
and content of the GSAT, making it an in-
valuable resource for students and educators
in their preparatory endeavors. Thus, this
finding not only validates the comprehensive-
ness of QB but also highlights its practical util-
ity in educational contexts, especially for high-
stakes examinations such as the GSAT.

Focusing on evaluating the impact of inte-
grating visual data on the performance of Vi-
sion BERT. This model, distinctively trained
on datasets from both the GSAT and QB, was
specifically designed to process and interpret
questions that contain images or tables. The
study involved a complex process of embed-
ding visual elements into the linguistic frame-
work of the model, essentially converting vi-
sual data into a format that is compatible with
word embeddings. This integration was en-
hanced by the diverse range of textual data
from the QB. As a result, Vision BERT, en-
hanced with visual data processing capabili-
ties, exhibited a significant performance im-
provement, outperforming the baseline model
(without visual data integration) by an impres-
sive 24%. This finding not only confirms the ef-
fectiveness of incorporating visual data in lan-
guage models but also provides critical insights

into the improvements possible through the in-
tegration of multi-modal data integration, un-
derscoring its potential in complex AI applica-
tions.

Figure 6: An example of a history question and
the corresponding responses generated by Taiwan
LLM and ChatGPT (I).

Figure 7: An example of a history question and
the corresponding responses generated by Taiwan
LLM and ChatGPT (II).

3.3.1 Prompt engineering for Taiwan
LLM

Drawing inspiration from recent advancements
in prompt engineering, our study acknowl-
edges the unique preferences of each LLM
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Training Dataset Model Method Explanation Accuracy
83-107 Social GSAT Chinese BERT MC 0.3568
Social QB (11347) Chinese BERT MC 0.4507
83-107 Social GSAT Taiwan LLM IT + QLoRA 0.3380
Social QB (11347) Taiwan LLM IT + QLoRA ✓ 0.5681
83-107 Social GSAT Taiwan LLM IT + LoftQ 0.4789
Social QB (11347) Taiwan LLM IT + LoftQ ✓ 0.5446

Table 4: The experimental results show that training the model with the QB notably improves its
performance on the 108-112 social GSAT tests, compared to other training sets.

Testing Dataset Model Method Explanation Accuracy
108-112 History GSAT Chinese BERT MC 0.4742
History QB (205) Chinese BERT MC 0.4780
108-112 History GSAT Taiwan LLM MC 0.5773
History QB (205) Taiwan LLM MC 0.5463
108-112 History GSAT Taiwan LLM IT + QLoRA 0.5360
History QB (205) Taiwan LLM IT + QLoRA 0.3463
History QB (205) Taiwan LLM IT + QLoRA ✓ 0.6000
108-112 History GSAT Taiwan LLM IT + LoftQ ✓ 0.6082
History QB (205) Taiwan LLM IT + LoftQ ✓ 0.6098

Table 5: Training with the History QB (9000 questions) results in comparable performance on both the
GSAT and QB, indicating its effectiveness for GSAT preparation.

Figure 8: An example of a history question and
the corresponding responses generated by Taiwan
LLM and ChatGPT (III).

towards specific instructional prompts. To
achieve this goal, we compiled and tested seven
different prompt templates on the Taiwan
LLM under zero-shot conditions. The base-
line performance is represented by an orange
bar chart with a score of 0.2936, reflecting the
model’s output without the application of any
prompt engineering techniques. Notably, the
prompt Take a deep breath significantly sur-
passed other variations in effectiveness. Con-

versely, Taiwan LLM showed a notable aver-
sion to prompts related to doggy treat rewards,
indicating a preference for specific types of in-
struction over others.

3.3.2 Experimental Results for Vision
BERT

As demonstrated in Table 6, our proposed
Vision BERT demonstrates superior perfor-
mance compared to BERT by integrating both
textual and visual information. This improve-
ment is evident whether training on a limited
dataset (GSAT) or a relatively larger dataset
(GSAT+QB).

Training Dataset Model Accuracy
83-107 GSAT BERT 0.3351
83-107 GSAT Vision BERT 0.3514
83-107 GSAT + QB BERT 0.3892
83-107 GSAT + QB Vision BERT 0.4162

Table 6: Results of test performance for 108-112
GSAT using BERT and Vision BERT.
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Figure 9: Prompt engineering on zero-shot Taiwan LLM.

4 Discussion

In expanding our research scope, it becomes
imperative to explore beyond the confines of
specialized QB and consider the integration of
raw data from textbooks as a potential train-
ing source for our models. Textbooks, which
represent the cornerstone of traditional educa-
tional systems, are rich repositories of struc-
tured knowledge that cover a wide spectrum
of subjects in a format meticulously curated
for educational purposes. The incorporation
of textbook content into our training regimen
promises to imbue the model with a more
profound understanding of academic concepts.
This approach could potentially bridge the gap
between academic theory and the practical ap-
plication of knowledge, enhancing the model’s
ability to comprehend and respond to complex
educational queries. Moreover, the diversity
and depth of information contained in text-
books could significantly augment the model’s
versatility, enabling it to cater to a broader
range of academic disciplines and learning lev-
els. Thus, the inclusion of textbook data, in
conjunction with our existing question bank
resources, could mark a pivotal step towards
developing more sophisticated and education-
ally tuned AI models.

5 Conclusion and Future Work
In this project, we have innovatively improved
AI applications in education by developing a
customized academic dataset and conducting
a comprehensive survey of Large Language
Model (LLM) tuning methods. Our approach,
benchmarked against advanced models such as
ChatGPT, resulted in significant performance
improvements. A significant advancement was
the integration of visual data processing with
LLMs, enabling the model to interpret both
textual and visual inputs. This multi-modal
capability expands the usefulness of AI in edu-
cation, especially in subjects that rely heavily
on visual content. Our work lays the ground-
work for more interactive and comprehensive
AI-driven educational tools, and it establishes
a foundation for future research on integrat-
ing advanced AI technologies in educational
settings.

For future research directions, there are sev-
eral avenues to enhance the capabilities and
performance of our model, while also address-
ing current limitations and expanding its po-
tential applications.

1. Investigate Lightweight Fine-
Tuning Methods: Explore additional
lightweight fine-tuning methods, such
as QLora (Dettmers et al., 2023), to
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address computational resource limita-
tions. These methods can improve model
performance while preserving efficiency.

2. Integrate Image-Related Data: In-
vestigate suitable methods for integrating
incorporate image-related data, such as
figures and tables, into the model input.
This integration can improve the model’s
ability to answer questions related to vi-
sual content, which is prevalent in various
domains.

3. Enhance Explanations with Rein-
forcement Learning: Investigate the
application of reinforcement learning
from human feedback (RLHF) to enhance
the quality of the detailed explanations
generated by the model. This can lead
to more informative and contextually rel-
evant explanations.

4. Collaborate with Junyi Academy:
Consider establishing collaboration with
Junyi Academy (均一), as they have the
potential to advance this research. Col-
laboration can lead to valuable insights
and resources for further development.
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